September 2025 - CBSE INFO

Select one of the languages below:

  • English
  • हिन्दी
  • বাংলা
  • ગુજરાતી
  • தமிழ்
  • অসমীয়া
  • मराठी
  • తెలుగు
  • ଓଡ଼ିଆ
  • മലയാളം
  • ಕನ್ನಡ
  • ਪੰਜਾਬੀ
  • اردو

Sunday, 21 September 2025

UNIT 1: Units and Measurements - Key Formulas

September 21, 2025 0
UNIT 1: Units and Measurements - Key Formulas

Units and Measurements - Key Formulas


1. Plane Angle

Formula:

dθ=dsr

What each symbol stands for:

  • dθ the infinitesimal plane angle

  • ds: infinitesimal arc length

  • r: radius of the circle

Example 

A circle of radius r=2.0 m has an arc length ds=1.0 m.

dθ=1.02.0=0.50 rad

2. Solid Angle

Formula:

dΩ=dAr2

What each symbol stands for:

  • dΩ: infinitesimal solid angle

  • dA: small patch of area on the spherical surface

  • r: radius of the sphere

Example 

On a sphere of radius r=1.0 m, a surface patch has area dA=0.20 m².

dΩ=0.20(1.0)2=0.20 sr

3. Density

Formula:

ρ=mV

What each symbol stands for:

  • ρ: mass density

  • m: mass of the object

  • V: volume occupied by the object

Example 

A block of mass m=12.0 g occupies volume V=3.0 cm³.

ρ=12.03.0=4.0 g/cm3

4. Newton’s Second Law (Force)

Formula
[ F = m,a ]
What each symbol stands for

  • (F): net force acting on an object
  • (m): mass of the object
  • (a): acceleration of the object

Simple example
A cart of mass (m=2.0) kg accelerates at (a=3.0) m/s².
[ F = 2.0 \times 3.0 = 6.0\quad\text{(N)} ]


5. Kinematic Equation (Constant Acceleration)

Formula
[ x = x_0 + v_0,t + \tfrac12,a,t^2 ]
What each symbol stands for

  • (x): displacement after time (t)
  • (x_0): initial displacement (at (t=0))
  • (v_0): initial velocity (at (t=0))
  • (t): elapsed time
  • (a): constant acceleration

Simple example
Start from (x_0=0), with (v_0=2.0) m/s and (a=1.0) m/s². After (t=3.0) s:
[ x = 0 + (2.0)(3.0) + \tfrac12(1.0)(3.0)^2 = 6.0 + 4.5 = 10.5\quad\text{m} ]


6. Period of a Simple Pendulum

Formula
[ T = 2\pi,\sqrt{\frac{l}{g}} ]
What each symbol stands for

  • (T): time period of one complete oscillation
  • (\pi): mathematical constant (≈ 3.1416)
  • (l): length of the pendulum
  • (g): acceleration due to gravity

Simple example
A pendulum of length (l=1.0) m on Earth ((g=9.8) m/s²):
[ T = 2\pi\sqrt{\frac{1.0}{9.8}} \approx 2.01\quad\text{s} ]


7. Percentage (Relative) Error

Formula
[ %;\text{error} = \frac{\Delta x}{x}\times100 ]
What each symbol stands for

  • (%;\text{error}): percentage uncertainty in the measurement
  • (\Delta x): absolute error in the measured quantity
  • (x): measured value

Simple example
A length (x=50.0) cm has an uncertainty (\Delta x=0.5) cm.
[ %;\text{error} = \frac{0.5}{50.0}\times100 = 1.0% ]


8. Error in a Product

Formula
[ \Delta(AB) = A,B;\bigl(\tfrac{\Delta A}{A} + \tfrac{\Delta B}{B}\bigr) ]
What each symbol stands for

  • (\Delta(AB)): absolute error in the product (A \times B)
  • (A, B): measured quantities being multiplied
  • (\Delta A, \Delta B): absolute errors in (A) and (B)

Simple example
(A=4.0\pm0.1), (B=2.0\pm0.2):

  • Product: (4.0\times2.0=8.0)
  • Relative errors: (\tfrac{0.1}{4.0}=0.025,;\tfrac{0.2}{2.0}=0.10)
  • Sum of rel. errors: (0.025+0.10=0.125)
  • Absolute error: (\Delta(AB)=8.0\times0.125=1.0)
    [ AB = 8.0 \pm 1.0 ]

With these, you have each formula, what every symbol represents, and a straightforward example showing its use.